Research

Projects | Yuichi's website

Closed-loop control of brain disorders / 脳活動操作による神経・精神疾患の制御

Many neurological disorders, such as epilepsy and Alzheimer’s disease, and psychiatric disorders, such as depression and addiction, are resistant to drug treatment, making their resolution a societal challenge. We view these disorders as disruptions in brain activity and are developing new methods to control their symptoms by manipulating brain activity with spatiotemporal specificity. 
てんかんやアルツハイマー病などの神経疾患、うつ病や依存症などの精神疾患は薬物抵抗性例が多く、その克服は社会的な課題です。我々は、これらの疾患を脳活動の障害であると捉え、時空間特異的な脳活動の操作でその症状を制御する、新しい手法の開発に挑んでいます。

Closed-loop control of epilepsy

Keywords: Closed-loop control, Real-time signal processing, Epilepsy, Depression, Neurological disorders, Psychiatric disorders

Publications

  • Sierra et al., Nat Commun 2023. PDF
  • Li and Takeuchi et al., Neuron 2023. PDF
  • Takeuchi et al., Front Behav Neurosci 2022. PDF
  • Takeuchi et al., Front Neural Circuits 2021. PDF
  • 竹内, Clin Neurosci 2021. PDF
  • Takeuchi et al., Brain 2021. PDF
  • Takeuchi and Berényi, Neurosci Res 2020. PDF

Non-invasive brain stimulation technology / 新しい非侵襲的脳刺激法の研究開発

Efficient manipulation of brain activity often involves inserting stimulating electrodes into brain tissue. However, inserting deep electrodes carries risks of brain hemorrhage and infection. Thus, even if new methods of disease control are discovered through invasive animal experiments, progressing to clinical research is challenging. Therefore, we are researching and developing methods to manipulate brain activity non-invasively from outside the skull by applying medical engineering technologies such as transcranial focused ultrasound irradiation and transcranial focused electrical stimulation.
効率的な脳活動操作のためには、脳実質への刺激電極の刺入が効果的です。しかしながら深部電極の侵襲的な刺入には、脳出血や感染症のリスクが伴います。そのため動物実験において侵襲的な方法で新しい疾患制御法を見出しても、臨床研究に進むことは容易ではありません。そこで我々は、経頭蓋集束超音波照射や経頭蓋集束電気刺激など医工学的技術を応用することで、頭蓋の外から非侵襲的に脳活動を操作する方法を研究開発しています。

Transcranial Ultrasound Stimulation (TUS)

Keywords: Transcranial Ultrasound Stimulation, Transcranial Focused Ultrasound Stimulation, Transcranial Focused Electrical Stimulation

Publications

  • Matsushita and Yoshida et al., PNAS 2024. PDF
  • 竹内、関、Clin Neurosci 2022. PDF
  • Vöröslakos, Takeuchi et al., Nat Commun 2018. PDF

Closed-loop control of the autonomic nervous system / 自律神経系の操作による疾患制御法の研究開発

We are developing new methods to control circulatory diseases such as heart failure and arrhythmia, and neurological and psychiatric disorders such as epilepsy and depression, by applying technologies to efficiently and effectively manipulate autonomic nervous system activity.
自律神経系の活動を自在操作する技術を応用し、心不全や不整脈などの循環器系疾患、てんかんやうつ病などの神経・精神疾患を制御する新しい手法の開発に取り組んでいます。

Closed-loop control of cardiac functions

Keywords: Heart rate, Set point, Ultrasound, Multi-sensory feedback

Publications

  • Xu Y, Yoshida K, Takeuchi YProc. SPIE 2023. PDF
  • 竹内、関、Clin Neurosci 2022. PDF

Neural basis of pathological decision-making / 適切な行動選択の神経基盤

Human and animal behaviors are motivated by internal desires. However, acting simply based on these desires may lead to social or economic disadvantages. Therefore, we predict the outcomes of our actions based on past experiences and act to maximize benefits for ourselves and our groups over time. We aim to elucidate the dynamics of neural circuits that enable context-appropriate behavioral choices.
人や動物の行動は動機によって裏付けられますが、内的な欲求に従って単純に行動すると社会的あるいは経済的な不都合を生じるかもしれません。そのため我々は行動の結果を過去の経験に基づいて予想し、未来に渡って自己や集団の利益を最大化するように行動します。このような状況に応じた行動選択を可能にする神経回路ダイナミクスを解明します。

Modeling of brain dynamics of decision-making. (A) Inverse network modeling using a machine learning. (B) Test of causal relationship between extracted brain dynamics and behavioral phenotypes.

Keywords: Prefrontal cortex, Motivation, Reward, Aversion, Limbic system, Oscillation, Cross-Spectral Factor Analysis, Schizophrenia, Addiction

Publications

  • 竹内Medical Science Digest 2020. PDF
  • Takeuchi and Berényi, Neurosci Res 2020. PDF

Large-scale computer simulation of neural circuit dynamics / 神経回路ダイナミクスの大規模シミュレーション

When examining the effects of brain stimulation or drug administration on neural circuit dynamics, the most direct approach is to record as much neural activity as possible from living tissues and animals, and conduct observational experiments with stimulation or drug administration. However, there are clear limitations to the range and number of neural circuits and cells that can be recorded simultaneously from living organisms. Thus, we build neural circuits consisting of thousands to tens of thousands of cells inside computers through programming and investigate the effects of brain stimulation or drug administration on neural circuit dynamics through simulations.
例えば脳刺激や薬物投与が神経回路ダイナミクスに与える影響に興味がある場合、最も直接的な実験は、生きた組織や動物からなるべく多くの神経細胞の活動を記録し、刺激や薬物投与を行うことです。しかしながら生体から同時に記録できる神経回路の範囲や細胞数には、明らかに限界があります。そこでコンピューター中に数千~数万個の神経細胞からなる神経回路を構築し、脳刺激や薬物投与が神経回路ダイナミクスに与える影響をシミュレーションで検討しています。

Keywords: NEURON simulator, Python, Brain stimulation, Membrane potential, Synaptic transmission, Oscillation