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Neuromodulation is a technology for reversibly modulating neural activity by applying artificial stimuli to an

organism, and ultrasound neuromodulation is promising with its superior spatial and time resolution. Here we

briefly mention the current situation of ultrasound neuromodulation and the neuromodulation of the

autonomic nervous system.
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ABSTRACT   

Neuromodulation is a technology for reversibly modulating neural activity by applying artificial stimuli to an organism. 
Electrical and magnetic stimulation technologies have been employed in clinical practices, especially for brain disorders 
including motor and mood disorders. Ultrasound stimulation has theoretically superior spatial and time resolution to 
electrical and magnetic stimulation. Even cell-type specific non-invasive neuromodulation is possible with an emerging 
technology with mechano-sensitive ion channels. Here we briefly mention the current situation of ultrasound 
neuromodulation and the neuromodulation of the autonomic nervous system. An application of the ultrasound 
neuromodulation of an organ controlled by the autonomic nervous system (such as the cardiovascular system) is then 
discussed. 
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1. INTRODUCTION  

Neuromodulation is a technique for reversibly modulating neural activity by applying artificial stimuli to an organism via 
devices or other means. Neuromodulation has made it possible to control drug-resistant cases of brain disorders such as 
epilepsy, Parkinson's disease, depression, etc.1 The most commonly used modality of neuromodulation has been 
electrical stimulation, which is used clinically as deep brain stimulation or transcranial electrical stimulation. Magnetic 
stimulation is also used as transcranial stimulation, especially for modulating symptoms of psychiatric disorders like 
major depressive disorder. However, these modalities have shortcomings such as the invasiveness associated with 
electrode insertion, low spatial resolution, and lack of cell-type specificity. Ultrasound is a relatively new modality for 
neuromodulation that complements the shortcomings of electric and magnetic neuromodulation. It has excellent bio-
permeability and can be delivered from outside the body (non-invasiveness), stimulus focus can be achieved by focusing 
its irradiation from multiple transducers (high spatial resolution), and it has the ability to temporally follow various 
stimulation patterns in sub-milliseconds (good temporal resolution). Thus, ultrasound makes it possible to non-invasively 
and highly precisely stimulate neuronal nuclei in deep brain structures. Ultrasound neuromodulation can be utilized not 
only to control disorders of the central nervous system (CNS), but also to control those of the autonomic nervous system 
(ANS). Thus, here we briefly review our knowledge of ultrasound neuromodulation and neuromodulation of the ANS. 
We then discuss possible applications of ultrasound neuromodulation of the ANS for controlling internal organs, mainly 
the heart. 

2. ULTRASOUND NEUROMODULATION 

Ultrasound can be utilized to modulate neuronal activities in either direct or indirect ways. Firstly, ultrasound can 
directly excite or inhibit neuronal activities via modulating mechanosensitive ion channels or lipid bilayers.2 It can open 
mechanosensitive ion channels by applying mechanical forces to cell membranes and the cytoskeleton.3,4 Ultrasound 
irradiation can modulate the intact brain via endogenous mechanosensitive ion channels such as Piezo channels and 
transient receptor  potential channels.5, 6 The overexpression of exogenous or endogenous ultrasound-sensitive channels 
or other molecules in a defined cell population can enhance the responses of neural activities to ultrasound 
(sonogenetics).7 Ultrasound may cause small pores of the plasma membrane and it may result in depolarization. Much 
research and development has been conducted to utilize ultrasound neuromodulation technologies for controlling brain 
disorders such as epilepsy.8 
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Ultrasound is also utilized to indirectly modulate neural activities such as brain region-specific drug or gene delivery, 
which is mediated by the transient opening of the blood-brain barrier (BBB) with lipid-based microbubbles. Transracial- 
focused ultrasound stimulation causes contraction and expansion of intravenously administered, ultrasound-sensitive 
microbubbles in the brain capillaries, which pushes tight junctions between vascular endothelial cells and transiently 
opens the BBB. Currently, this ultrasound-mediated, targeted-drug delivery is under investigation for therapies of 
Alzheimer’s disease,9 Parkinson’s disease,10 amyotrophic lateral sclerosis,11 and brain tumors.12, 13 Ultrasound-mediated 
BBB opening also enables non-invasive, targeted-gene delivery in small and large brain regions.14, 15 

3. NEUROMODULATION OF AUTONOMIC NERVOUS SYSTEM 

The ANS maintains the homeostasis of systemic organs and tissue with an extensive network via multiple level reflex 
controls. The sympathetic nerve and parasympathetic nerve compose normal autonomic tone with opposite functions and 
complementary ganglia positions. Hence, the selective bilateral modulation of the ANS would redress dysfunctions of 
the regulatory circuits and treat disease progression. To date, neuromodulation technologies have allowed attempts to 
modulate specific neural circuits to control targeted organs. Vagus nerve stimulation has been revealed as an effective 
way for treating inflammation diseases and heart failure.16-18 Baroreflex activation therapy was also tested to relieve 
refractory hypertension.19-22 In abdominal targets, vagal nerve blockade has been demonstrated as a therapeutic method 
to alleviate obesity.23-26 For lower urinary and digestive tract innervation, sacral nerve stimulation has been used to treat 
pelvic dysfunctions such as incontinence.27-29 For chronic stimulation therapy, proper devices with closed-loop control 
would improve patient compliance and effects.1, 30, 31 These neuromodulation technologies may be replaced by those with 
ultrasound for enhanced safety and effectiveness. 

4. NEUROMODULATION OF CARDIOVASCULAR DISEASES 

Sympathetic hyperactivity and parasympathetic hypoactivity underlie many cardiovascular diseases such as hypertension, 
acute myocardial infarction and heart failure.32-34 Therefore, the imbalance of the ANS can be a therapeutic target. In 
baroreflex activation therapy, the baroreceptors of the carotid sinus nerve would be electrically activated, then 
sympathetic activity and heart rate would be inhibited via the reflex arc, resulting in a decrease of blood pressure. In 
recent years, neuromodulation devices have shown effectiveness and safety in clinical trials for refractory hypertension.22, 

35-37 Deep brain stimulation of the midbrain periaqueductal grey has been tested to effectively influence blood pressure 
and heart rate variability,38-40 which provides a possible therapeutic target. The spinal cord has utility in reducing 
sympathetic activity with largely major autonomic ganglia. Spinal cord stimulation in T1-T3 levels has been shown to be 
a safe and feasible treatment for heart failure41 (but see Zipes et al., 2016).42 Bilateral stellate ganglia innervate the left 
ventricle and are remodeled with hypertrophy, inflammation and oxidative stress in cardiomyopathy and ventricular 
arrhythmia patients. Therefore, bilateral stellectomy (known as cardiac sympathetic denervation)  has demonstrated 
efficacy in heart failure and refractory ventricular arrhythmia as an intrinsic cardiac neuromodulation.43, 44 Additionally, 
renal denervation can decrease abnormal sympathetic afferent activity caused by noradrenaline spillover. Bilateral renal 
denervation has been a reported result of reduced arrhythmic burden in several clinical trials.45-47 Cervical vagus nerve 
stimulation has substantially elevated the parasympathetic activity and restored autonomic tone balance. However, 
clinical trials have failed to demonstrate the improvement of heart failure symptoms.48, 49 On the other hand, another 
ANTHEM-HF study showed improvements in cardiac function and heart failure symptoms.50-52 Different stimulation 
parameters and devices were used in these trials which might explain the variety of efficacy. The tragus is innervated by 
the auricular branch of the vagus nerve and this branch enables transcutaneous vagus nerve stimulation from the tragus in 
humans.53 The parasympathetic activity was significantly decreased by the tragus stimulation.54 Low-level tragus 
stimulation has suppressed atrial fibrillation and decreased inflammatory cytokines in patients.55 In patients with 
diastolic dysfunction, left ventricle longitudinal mechanics acutely improved under right tragus stimulation.18 
Transcranial-focused ultrasound stimulation targeting the baroreflex circuits, the medulla cardiovascular autonomic 
centers, and the vagus nerve itself or its motor nucleus may be a safe and effective therapeutic strategy. 

5. CONCLUSION 

Here our current knowledge of ultrasound neuromodulation technologies and neuromodulation therapies for ANS 
disorders is provided. The ability to non-invasively stimulate neural nuclei deep in the brain is particularly important 
because it complements the shortcomings of electrical and magnetic stimulation. The implementation of wearable 
ultrasound neuromodulation devices combined with the real-time processing of biological signals is also expected to lead 
to on-demand neural activity intervention methods. These technologies can be combined to implement real-time control 
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of the cardiac functions via time and organ-specific, transcranial-focused ultrasound stimulation of the medulla 
cardiovascular autonomic centers. These topics will be discussed further at the conference. 
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