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SUMMARY
Peripheral nerve injury induces functional andstructural remodelingof neural circuits along thesomatosensory
pathways, forming thebasis for somatotopic reorganization andectopic sensations, suchas referredphantom
pain. However, the mechanisms underlying that remodeling remain largely unknown. Whisker sensory nerve
injury drives functional remodeling in the somatosensory thalamus: the number of afferent inputs to each
thalamic neuron increases from one to many. Here, we report that extrasynaptic g-aminobutyric acid-type A
receptor (GABAAR)-mediated tonic inhibition isnecessary for that remodeling.ExtrasynapticGABAARcurrents
werepotentiated rapidly afternerve injury inadvanceof remodeling.Pharmacological activationof the thalamic
extrasynapticGABAARs in intactmice inducedsimilar remodeling.Notably, conditional deletionof extrasynap-
tic GABAARs in the thalamus rescued both the injury-induced remodeling and the ectopic mechanical hyper-
sensitivity. Together, our results reveal a molecular basis for injury-induced remodeling of neural circuits and
may provide a new pharmacological target for referred phantom sensations after peripheral nerve injury.
INTRODUCTION

Peripheral nerve injury frequently triggers referred phantom sen-

sations that are perceived at a location other than the injured site.

Functional brain imaging and electrophysiological studies identi-

fied that peripheral nerve injury causes maladaptive plastic

changes along the somatosensory pathways, including somato-

topic reorganization; the degree of which is highly correlatedwith

phantom pain and/or sensation (Eto et al., 2011; Graziano and

Jones, 2009; Jones and Pons, 1998; Kim and Nabekura, 2011;

Takeuchi et al., 2012; Wang and Thompson, 2008). Furthermore,

synaptic connections in the central nervous system (CNS) are

dynamically remodeled by peripheral nerve injury (Kim et al.,

2016; Kim and Nabekura, 2011). We found that complete tran-

section of the whisker sensory nerve induces functional remod-

eling of afferent fibers in the somatosensory thalamus, such that

the number of afferent inputs onto each thalamic neuron in-

creases from one to many (Takeuchi et al., 2012). This remodel-

ing is closely associated with somatotopic reorganization and

ectopic mechanical hypersensitivity in the mandibular region
This is an open access article und
(Takeuchi et al., 2017). However, although dynamic remodeling

of CNS neuronal circuits by peripheral nerve injury has been

intensively investigated, the underlying molecular mechanisms

remain largely unknown.

g-Aminobutyric acid (GABA)-mediated inhibition has been

proposed to be crucial for the initiation and maintenance of so-

matotopic reorganization in the CNS induced by peripheral nerve

injury. The protein andmRNA expression levels of the GABAA re-

ceptors (GABAARs), glutamate decarboxylase (GAD), and GABA

in the CNS are altered after nerve injury (Castro-Lopes et al.,

1993; Fukuoka et al., 1998; Jones and Pons, 1998; Moore et

al., 2002; Mowery et al., 2013; Ralston and Ralston, 1994; Rau-

sell et al., 1992; Vassias et al., 2005). Downregulation of

GABAARs was linked to rapid somatotopic reorganization of

the adult cortex after nerve injury, such as that underlying the un-

masking of latent synaptic connections (Chen et al., 2002; Mow-

ery et al., 2013; Ralston and Ralston, 1994; Rausell et al., 1992).

GABAARs produce two types of inhibition: phasic and tonic.

Phasic inhibition has fast kinetics and is mediated by synaptic

GABAARs, whereas tonic inhibition has slower kinetics and is
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mediated by extrasynaptic GABAARs. Extrasynaptic GABAARs

are a key regulator of neural plasticity under normal and patho-

physiological conditions (Collinson et al., 2002; Whissell et al.,

2015). For instance, pharmacological inhibition or genetic

knockdown of extrasynaptic GABAARs enhances long-term

potentiation (Collinson et al., 2002). Reducing inordinate tonic in-

hibition is effective for recovery of motor function after a stroke in

mice (Clarkson et al., 2010). In the thalamus, thalamocortical

neurons receive GABAergic inhibition mainly from the reticular

thalamic nucleus (Arcelli et al., 1997; Cox et al., 1997; Ohara

and Lieberman, 1985; Steriade, 2005). Extrasynaptic GABAARs

are highly expressed in the somatosensory thalamus (Belelli

et al., 2005; Chandra et al., 2006; Jia et al., 2005; Peden et al.,

2008) and regulate the excitability and firing mode of thalamo-

cortical neurons (Cope et al., 2005). Moreover, Sametsky et al.

(2015) reported that a peripheral acoustic insult upregulates ex-

trasynaptic GABAAR currents in the auditory thalamus. These re-

sults suggest that extrasynaptic GABAARs have a functional role

in nerve injury-induced plasticity.

Here, we found that thalamic extrasynaptic GABAAR currents

were potentiated after injury to the whisker sensory nerve.

Furthermore, potentiation of thalamic extrasynaptic GABAAR

currents induced remodeling of afferent fibers in the somatosen-

sory thalamus and the development of ectopic mechanical hy-

persensitivity; both of which could be rescued by conditional

deletion of thalamic extrasynaptic GABAARs. These results pro-

vide insights into the molecular basis of nerve injury-induced re-

modeling and associated phantom sensations.

RESULTS

Potentiation of Extrasynaptic GABAAR Currents in the
Ventral Posterior Medial Nucleus (VPM) of the
Somatosensory Thalamus after Peripheral Nerve Injury
Somatosensory information from thewhiskers is transferred to the

principal trigeminal nucleus (PrV) via the infraorbital nerve (ION),

the second branch of the trigeminal nerve. The information is

then sent to neurons in the contralateral VPM through the medial

lemniscal fibers, with each VPMneuron receiving input from a sin-

gle fiber. We previously reported that an infraorbital nerve cut

(IONC) in mice disrupts the normal, one-to-one connection of

lemniscal fibers to VPM neurons, with recruitment of additional

lemniscal fibers onto individual VPM neurons becoming apparent

on approximately postoperative day 5 (POD5; Figure S1) (Takeu-

chi et al., 2012, 2017). Because each VPM neuron generally re-

ceives a single lemniscal fiber input, the lemniscal excitatory post-

synaptic current (EPSC) is normally observed as an all-or-none

response (a single-step EPSC) to increments of stimulus intensity

applied to the lemniscal fibers. Following IONC, however, two or

more discrete incremental EPSCs are elicited by lemniscal stimu-

lation inapproximately 70%of recordedVPMneurons (IONC-mul-

tiple neurons); the remaining 30% retain a single-step, all-or-none

response (IONC-single neurons) as observed in normal VPM neu-

rons. To investigate postoperative changes in tonicGABAergic in-

hibition after IONC, we recorded both lemniscal EPSCs (at a hold-

ing potential of�60mV) and extrasynaptic GABAAR currents (at a

holdingpotential of 0mV) from the sameVPMneuron (seeMethod

Details and Figure 1A). We first sequentially recorded agonist-
2 Cell Reports 31, 107797, June 23, 2020
induced and endogenous extrasynaptic GABAAR currents in

VPM neurons. Application of an extrasynaptic GABAAR agonist,

THIP (Chandra et al., 2006; Peden et al., 2008) (10 mM for 30 s),

in vitro increased the holding current, reflecting extrasynaptic

GABAAR currents in VPM neurons (Figure 1B). The amplitude of

agonist-induced extrasynaptic GABAAR currents was larger in

IONC neurons than it was in shamneurons on POD1–3 and there-

after (POD1–3, p < 0.01, unpaired Student’s t test; POD4–5, p <

0.05, unpaired Student’s t test; Figures 1B and 1C; Table S1).

Interestingly, during POD6–9, we found that the agonist-induced

potentiation of extrasynaptic GABAAR currents was present in

IONC-multiple neurons (p < 0.01, one-way ANOVA followed by

Bonferroni test; Figures 1B and 1C; Table S1) but not in IONC-sin-

gle neurons (p > 0.05 versus shamneurons; p < 0.01 versus IONC-

multiple neurons; Figures 1B and 1C; Table S1).

We also evaluated endogenous extrasynaptic GABAAR cur-

rents by measuring the differences in the holding currents before

THIP application and during application of 100 mM of bicuculline

methochloride, a GABAAR antagonist. Consistent with the results

from THIP application, during POD1–3, the mean amplitude was

larger in IONC neurons than in sham neurons (p < 0.05, unpaired

Student’s t test; Figures 1B and 1D). This potentiation persisted

during POD4–5 (p < 0.05, unpaired Student’s t test; Figures 1B

and 1D). During POD6–9, IONC-multiple neurons showed poten-

tiation of endogenousextrasynapticGABAARcurrents (n = 15, p <

0.001, one-way ANOVA followed by Bonferroni test) but not

IONC-singleneurons (n=11,p>0.05; Figures1Band1D), consis-

tent with the results from THIP application. Next, we performed

cluster analysis on endogenous and agonist-induced, extrasy-

naptic GABAAR currents from all neurons, both IONC and sham.

Neurons recorded during POD1–5 were classified as belonging

to a small-amplitude cluster or a large-amplitude cluster (Fig-

ure S2). Althoughmost of the sham neurons (94.1%, 16 of 17) be-

longed to the small-amplitude cluster, 66.7% (14 of 21) of the

IONC neurons belonged to the large-amplitude cluster. The other

IONC neurons (7 of 21) belonged to the small-amplitude cluster

(Figure S2). These results suggest that the potentiationof extrasy-

naptic GABAAR currents in VPM neurons after IONC correlates

with the remodeling of lemniscal fibers in IONC-multiple neurons.

To assess whether an increase in GABAAR expression under-

lies the IONC-induced potentiation of extrasynaptic GABAAR cur-

rents, we examined the surface expression level of a4 subunits, a

main component of extrasynaptic GABAARs in the VPM, and a1

subunits, a component of synaptic GABAARs (Peden et al.,

2008) (Figure 2A). Cluster staining of a4 subunits was abundant

near the soma and rarely colocalized with staining for a1 subunits

(Figures 2B and 2C). IONC increased the number and area of a4

subunit immunoreactivity but had little effect on the number or

area of a1 subunit immunoreactivity (Figures 2D–2G; Table S2).

In IONCmice, there was little colocalization of a4 and a1 subunits

(data not shown). Thus, these results suggest that an IONC-

induced increase in a4 subunit expression underlies the potentia-

tion of extrasynaptic GABAAR currents in VPM neurons.

In contrast to the extrasynaptic GABAAR currents, synaptic

GABAAR currents decreased in amplitude soon after IONC (Fig-

ure S3A). The amplitudes of evoked inhibitory postsynaptic cur-

rents (eIPSCs; Figures S3A and S3B), spontaneous IPCSs

(sIPSCs; Figure S3C), and miniature IPSCs (mIPSCs; Figures
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Figure 1. Infraorbital Nerve Cut (IONC) Mark-

edly Increases Extrasynaptic GABAAR Cur-

rents in a Ventral Posterior Medial Nucleus

(VPM) Neuron

(A) Schematic drawings of the recording configu-

ration and remodeling of the medial lemniscal fibers

after IONC. AMPAR-mediated lemniscal EPSCs

and extrasynaptic GABAAR currents were recorded

from the same neuron.

(B) Representative traces of extrasynaptic GABAAR

currents in VPM neurons of sham or IONC mice on

postoperative day 3 (POD3) and POD5. Agonist-

induced extrasynaptic GABAAR currents are re-

vealed by the shift in the holding current after

application of THIP (extrasynaptic GABAAR agonist;

10 mM, 30 s). Endogenous extrasynaptic GABAARs

currents are estimated from the shift in the holding

currents after application of bicuculline (GABAAR

antagonist; 100 mM, 5min). Representative traces of

AMPAR-mediated lemniscal EPSCs (bottom) and

extrasynaptic GABAAR currents (upper) in sham,

IONC-multiple, and IONC-single neurons on POD7.

(C and D) Summary graphs showing the mean am-

plitudes of agonist-induced or endogenous extra-

synaptic GABAAR currents with application of THIP

(C) or bicuculline (D), respectively. Data represent

the means ± SEM of 10–16 cells. *p < 0.05, **p <

0.01, ***p < 0.001, unpaired Student’s t test or post

hoc Bonferroni test after one-way ANOVA. n.s., not

significant.
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S3E and S3F) decreased from POD1 after IONC. During

POD6–9, the sIPSC amplitudes were smaller in IONC-multiple

neurons (eight neurons) than they were in sham neurons (seven

neurons, p < 0.01, one-way ANOVA followed by Bonferroni

test) or IONC-single neurons (seven neurons, p < 0.05; Fig-

ure S3C). The sIPSC frequencies in IONC neurons were

decreased during POD1–3 (p < 0.001, unpaired Student’s t

test; Figure S3C), whereas the inter-event intervals of mIPSCs

in IONC neurons did not differ from those in sham neurons (p >

0.05, Kolmogorov–Smirnov test; Figure S3G). During POD6-9,

the sIPSC frequencies did not differ among the three groups (p

> 0.05, one-way ANOVA; Figure S3D).

Inhibitory but Not Excitatory Charges Increase in VPM
Neurons after Peripheral Nerve Injury
We further examined the excitatory and inhibitory charges in

IONC neurons to estimate changes in excitatory and inhibitory
inputs (Figure 3A). In IONC-multiple neu-

rons, although the phasic inhibitory charge

was smaller than that in the sham neurons

(p < 0.05, one-way ANOVA followed by

Bonferroni test) or in IONC-single neurons

(p < 0.05; Figures 3A and 3B; Table S3),

the tonic inhibitory charge (Figure 3B; Ta-

ble S3) and the total inhibitory charge

(phasic plus tonic inhibitory charges; Fig-

ure 3C; Table S3) in IONC-multiple neurons

were significantly larger than those in

IONC-single neurons (tonic inhibitory
charge, p < 0.001; total inhibitory charge, p < 0.001) and sham

neurons (tonic inhibitory charge, p < 0.001; total inhibitory

charge, p < 0.001). By contrast, the excitatory charge did not

differ among the three groups (p > 0.05; Figure 3D; Table S3).

These results collectively indicate that the inhibitory charge

was markedly potentiated in IONC neurons because of

increased extrasynaptic GABAAR currents, which were apparent

as early as POD1, in advance of IONC-induced remodeling of the

lemniscal afferents. Furthermore, this potentiation persisted to

POD9 selectively in IONC-multiple neurons.

Activation of Extrasynaptic GABAARs Is Sufficient to
Induce the Remodeling of Afferent Fibers
Our findings raise the possibility that potentiation of extrasynaptic

GABAAR currents may be sufficient to induce the remodeling of

afferent fibers. To test that possibility, we infused THIP (100 mM)

or saline continuously into the VPM of normal mice in vivo through
Cell Reports 31, 107797, June 23, 2020 3
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Figure 2. IONC Increases the Expression of

Extrasynaptic GABAAR a4 Subunits in the

VPM

(A) Immunohistochemical staining of a4 (red) and a1

(green) subunits in the VPM of a normal mouse at

postnatal day (P24). D, dorsal; L, lateral; Po, pos-

terior nucleus; RTN, reticular thalamic nucleus; VPL,

ventral posterior lateral nucleus of the thalamus.

(B) Somatic localization of a4 subunits (red) and

ubiquitous distribution of a1 subunits (green) in the

VPM. The regions in the white, dotted boxes are

magnified in (C).

(C) Segregation of a4 (red) and a1 (green) subunits

at somatic location. Arrowheads, a4 subunits that

did not colocalize with a1 subunits.

(D and E) Immunostaining of a4 (red) and a1 sub-

units (green) in normal (D) and IONCmice (E) at P24.

(F and G) Summary graphs showing the density (F)

and area (G) of a4- and a1-immunoreactive clusters

in the VPM of normal and IONC mice. Data are the

means ± SEM from three mice. ***p < 0.001 by un-

paired Student’s t test. n.s., not significant.

Article
ll

OPEN ACCESS
an osmotic mini-pump from postnatal day 21 (P21) and then re-

corded lemniscal EPSCs from P27 to P33 (Figure 4A). In saline-

treated mice, only 23% (6 of 26) of the recorded VPM neurons

received multiple lemniscal fiber inputs (Figures 4B and 4C). By

contrast, the proportion of neurons that received multiple inputs

was significantly increased to 57% (16 of 28) in THIP-treated

mice (p < 0.05, c2 test; Figures 4B and 4C). These results indicate

that activation of extrasynaptic GABAARs is sufficient to induce

the remodeling of lemniscal fibers. The mean amplitude of

a-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor

(AMPAR)-mediated, single-fiber lemniscal EPSCs in THIP-treated

neurons was significantly smaller than it was in saline-treated

neurons (p < 0.05, unpaired Student’s t test; Figure 4D; Table

S4). However, the maximum amplitude of AMPAR-mediated

lemniscal EPSCs was not affected by THIP treatment (p > 0.05;

Figure 4E; Table S4). These results closely resemble those re-

ported in our previous study of IONC-induced remodeling of

lemniscal fibers (Takeuchi et al., 2012).
4 Cell Reports 31, 107797, June 23, 2020
Extrasynaptic GABAARs in VPM
Neurons Are Crucial for the
Remodeling of Afferent Fibers after
Peripheral Nerve Injury
If extrasynaptic GABAARs in the VPM are

required for IONC-induced remodeling of

lemniscal fibers, then the absence of extra-

synaptic GABAARs in VPM neurons should

prevent remodeling. To test that, we

knocked out a4 subunits from VPM neu-

rons by injecting iCre-GFP-lentivirus into

the VPM of P14 a4-floxed mice (a4 KO;

see Method Details). We performed IONC

on P21, 1 week after the lentivirus injection

and recorded both lemniscal EPSCs and

extrasynaptic GABAAR currents from the

same neurons during P28 to P33 (Fig-

ure 5A). The extrasynaptic GABAAR cur-
rent induced by a bath application of THIP (10 mM) was almost

entirely abolished in a4 KO neurons, indicating that a4 subunits

were knocked out successfully (Figure 5B).

Under these conditions, the percentage of IONC-single neu-

rons increased significantly to 62% (23 of 37) in a4 KO neurons,

compared with 25% (8 of 32) in control neurons (p < 0.01, c2

test; Figure 5C). In addition, this percentage of IONC-single neu-

rons ina4KOmice did not differ from that in saline-treatedmice (p

> 0.05, c2 test; see Figure 4C). The mean amplitude of AMPAR-

mediated, single-fiber lemniscal EPSCs was significantly larger

in a4 KO, than in control neurons (p < 0.05, unpaired Student’s t

test; Figure 5D; Table S4). However, the mean maximum ampli-

tude of AMPAR-mediated lemniscal EPSCs was not different

(p > 0.05; Figure 5E; Table S4). These results demonstrate that ex-

trasynaptic GABAARs in VPM neurons are necessary for the

IONC-induced remodeling of lemniscal fibers.

In contrast to the effect on remodeling, KO of the a4 subunit

had no effect on the eIPSC amplitude (1,396 ± 125 pA for control
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Figure 3. IONC Potentiates the Inhibitory

Charge Specifically in VPM Neurons with

Abnormally Recruited Lemniscal Fibers

(A) Representative traces of spontaneous IPSCs

(sIPSCs, top), spontaneous EPSCs (sEPSCs, mid-

dle), and extrasynaptic GABAAR currents (revealed

by bicuculline, bottom) in sham, IONC-multiple, and

IONC-single neurons on POD7.

(B–D) Summary graphs showing the mean inhibitory

phasic and tonic charges (B), the total inhibitory

charges (phasic plus tonic) (C), and the excitatory

charges (D) of sIPSCs, extrasynaptic GABAAR cur-

rents, and sEPSCs during POD6–9. The tonic charge

was calculated from the extrasynaptic GABAAR

currents revealed by application of bicuculline

(100 mM). Data represent the means ± SEM of

seven to eight cells. *p < 0.05, p < 0.001, post hoc

Bonferroni test after one-way ANOVA. n.s., not

significant.
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neurons, n = 11 versus 1,713 ± 264 pA for a4 KO neurons, n = 12;

p > 0.05, unpaired Student’s t test). Furthermore, the sIPSC

amplitude in a4 KO neurons was not altered by bath application

of THIP (p > 0.05, paired Student’s t test; Figure S4). Therefore,

our findings are consistent with previous reports that the phasic

IPSCs are not affected by the deletion of a4 subunits (Chandra

et al., 2006) or the application of THIP (Belelli et al., 2005; Samet-

sky et al., 2015).

Extrasynaptic GABAARs Also Contribute to the
Maintenance of the Remodeling
We previously demonstrated that IONC induces remodeling of

lemniscal fibers from POD5 (Takeuchi et al., 2012, 2017). We

found that potentiated extrasynaptic GABAAR currents persisted

selectively in IONC-multiple neurons (POD6–9; Figure 1). This rai-

ses the possibility that extrasynaptic GABAARs contribute to the

maintenance of the remodeling, as well as its induction. To test

that possibility, we knocked out a4 subunits after remodeling in

the VPM (Figure 6A). Lentivirus vector expressing iCre-GFP was

injected into the VPM at P26 (POD5) to delete a4 subunits during

P33–43 (POD12–22; Figure 6A). From 1 week after the lentivirus

injection (on P33–43), we recorded lemniscal EPSCs from both

a4 KO and control neurons (Figures 6A and 6B). Approximately

67% (20 of 30) of the control neurons received multiple fiber in-

puts (IONC-multiple neurons; Figures 6C and 6D). By contrast,

in a4 KO neurons, the percentage of IONC-multiple neurons

was markedly decreased to 24% (4 of 17 recorded neurons, p <

0.05, c2 test; Figures 6C and 6D). Moreover, there was no signif-

icant difference in the mean amplitude of AMPAR-mediated, sin-

gle-fiber lemniscal EPSCs between a4 KO and control neurons

(p > 0.05, unpaired Student’s t test; Figure 6E; Table S4). How-

ever, the mean maximum amplitudes were significantly smaller

in a4 KO neurons than they were in control neurons (p < 0.05; Fig-

ure 6F; Table S4), suggesting that deletion of a4 eliminated the
surplus fibers, but the synaptic strength of

the weakened remaining fibers after IONC

was insufficient to recover the original

maximal amplitude. Together, these results
indicate that extrasynaptic GABAARs are involved not only in

the induction but also in the maintenance of afferent fiber remod-

eling in VPM neurons after IONC.

Change in VPM Neuronal Activity after Peripheral Nerve
Injury
Several lines of evidence indicate that activity in VPM neurons

is influenced byGABAergic inhibition (Cope et al., 2005). Relative

hyperpolarization by GABAergic inhibition de-inactivates T-type

Ca2+ channels, inducing burst-mode firing (Sherman, 2001). We

observed that potentiation of extrasynaptic GABAAR currents by

bath application of THIP in vitro hyperpolarized the membrane

potential and changed the cell firing pattern from tonic to burst

(Figure S5). Therefore, it is possible that the potentiation of extra-

synaptic GABAAR currents after IONC influences the firing

pattern of VPM neurons in vivo. To test that possibility, we re-

corded spontaneous spikes from the barreloid area of the VPM

in awake head-fixed mice after IONC (Figures S6). During

POD9–10, the tonic spike frequency decreased significantly

(p < 0.05; Figures S6F and S6G), but the burst spike frequency

did not change (p > 0.05, Mann-Whitney U test), and the total

spike frequency (tonic and burst) decreased with IONC (p <

0.05, Mann-Whitney U test; Figures S6F and S6G). Conse-

quently, the proportion of burst spikes to total spikes increased

significantly (p < 0.01; Figure S6H). These results suggest that,

after IONC, VPM neuronal firing was globally inhibited by the

increased tonic inhibitory conductance and shifted from tonic-

to burst-firing mode in vivo.

Thalamic Tonic GABAAR Inhibition Controls Peripheral
Nerve Injury-Induced Ectopic Mechanical
Hypersensitivity
We previously reported that the origins of the newly recruited

afferent fibers after IONC include the V3 subregion of the
Cell Reports 31, 107797, June 23, 2020 5
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Figure 4. Chronic Treatment with an Extrasy-

naptic GABAAR Agonist In Vivo Recruits

Additional Lemniscal Fibers to VPM Neurons

(A) Experimental schedule.

(B) Representative traces of AMPAR-mediated

lemniscal EPSCs from VPM neurons in slices pre-

pared from saline- or 100-mM THIP-treated mice.

(C) Proportions of VPM neurons with different

numbers of discrete lemniscal EPSC steps in saline-

and THIP-treated mice. The number of recorded

neurons was 26–28. *p < 0.05 by c2 test.

(D and E) Summary bar graphs showing the mean

amplitudes of single fiber (SF)-mediated lemniscal

EPSCs (D) and maximum (Max.) lemniscal EPSCs

(E) at a holding potential of �70 mV. Data represent

the means ± SEM of 20–25 neurons. *p < 0.05 by

unpaired Student’s t test. n.s., not significant.
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trigeminal nuclei (PrV3) and the cuneate nucleus, which carry so-

matosensory information from the mandibular (lower jaw) region

and other areas of the body, respectively (Takeuchi et al., 2017).

Concomitant with these changes, mice show allodynia-like

ectopic mechanical hypersensitivity in the mandibular region

adjacent to the injured maxillary (whisker pad) region after

IONC (Takeuchi et al., 2017).

To confirm whether potentiated extrasynaptic GABAAR cur-

rents after IONC are involved in the ectopic mechanical hyper-

sensitivity observed after IONC, we examined IONC-induced

ectopicmechanical hypersensitivity in a4 KOmice (Figure 7). Us-

ing the von Frey test, we measured withdrawal thresholds in

response to mechanical stimulation applied to the mandibular

or maxillary region before (P21) and after (POD4–5) IONC (Fig-

ures 7A and 7B). As we reported previously (Takeuchi et al.,

2017), IONC causes ectopic hypersensitivity: the withdrawal

threshold for the ipsilateral mandibular region was lower after

IONC in control mice (p < 0.001, one-way ANOVA followed by

Bonferroni test; Figure 7C; Table S5). However, in a4 KO mice,

this ectopic hypersensitivity was significantly suppressed, as

demonstrated by recovery of the withdrawal threshold in a4

KO mice (p < 0.001; Figure 7C; Table S5). There was no with-

drawal response (i.e., mice did not respond even at the

maximum cutoff force) to stimulation of the maxillary region in

either control or a4 KO mice (p < 0.001; Figure 7C; Table S5)

because those mice had no abnormal sensation in the maxillary

region after IONC. When a sham operation was performed

instead of IONC, the withdrawal thresholds in control and a4

KO mice were unaffected (Figures S7A–S7C).

In addition, THIP infusion into the center of the barreloid of the

VPM was sufficient to induce mechanical hypersensitivity in the

contralateral mandibular region in normal mice (Figures S7D–

S7F). We observed a reduction in the withdrawal threshold in
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the left mandibular region with THIP treat-

ment, relative to both the pre-treatment

withdrawal threshold (p < 0.001; Fig-

ure S7F) and saline controls (p < 0.01; Fig-

ure S7F). We also observed that the

threshold tended to decrease for the

contralateral maxillary region in THIP-
treated mice, although the effect was not significant (p > 0.05,

one-way ANOVA followed by Bonferroni test; Figure S7F). This

tendency was probably due to drug diffusion. Taken together,

these results strongly suggest that potentiated extrasynaptic

GABAAR activation is critically involved in IONC-induced ectopic

mechanical hypersensitivity.

DISCUSSION

GABAergic inhibition has been implicated in multiple aspects of

the plasticity that occurs in the CNS following peripheral nerve

injury. In the present study, we show that extrasynaptic

GABAARs are crucial for triggering andmaintaining the abnormal

remodeling of afferent fibers in the VPM after peripheral nerve

injury and for the resulting ectopic sensations.

Peripheral nerve injury or deafferentation leads to changes in

the expression levels of GABA, GAD, and GABAARs in the spinal

cord (Castro-Lopes et al., 1993; Fukuoka et al., 1998; Moore et

al., 2002), brainstem (Vassias et al., 2005), thalamus (Ralston

and Ralston, 1994; Rausell et al., 1992), and cerebral cortex

(Garraghty et al., 1991; Hendry and Jones, 1986; Jones and

Pons, 1998; Mowery et al., 2013; Welker et al., 1989). We previ-

ously reported that IONC induces remodeling of lemniscal fibers

from POD5 (Takeuchi et al., 2012). Here, extrasynaptic GABAAR

currents in VPM neurons were potentiated soon after IONC (from

POD1), before the remodeling. This potentiation continued and

was detected at POD6–9 selectively in VPM neurons that ex-

hibited remodeling of lemniscal fibers. Interestingly, neurons re-

corded during POD1–5 could be divided into two clusters, with

and without potentiation of extrasynaptic GABAAR currents,

even before the remodeling occurred. The proportion of neurons

in the potentiated cluster was very similar to that of the remod-

eled neurons (about 70%). These results strongly suggest that
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Figure 5. Conditional Deletion of Extrasynap-

tic GABAAR a4 Subunits from VPM Neurons

before IONCPrevents IONC-InducedRemod-

eling of Lemniscal Afferent Fibers

(A) Top: experimental schedule. Middle: lentivirus

vector design and gene structure of a4-floxed mice.

Injection of lentivirus vector into the VPM of a4-

floxed mice induces excision of the exon 3 domain

of the a4 subunit. Bottom: representative images

from a whole-cell-recorded neuron expressing GFP

(green) and filled with biocytin (red) in the VPM.

(B) Top: extrasynaptic GABAAR currents in a VPM

neuron are abolished by knockout of a4 subunits (a4

KO neurons). Bottom: representative traces of

AMPAR-mediated lemniscal EPSCs in control (left)

and a4 KO (right) neurons.

(C) Proportions of a4 KO and control VPM neurons

with different numbers of discrete AMPAR-medi-

ated lemniscal EPSC steps. The number of re-

corded neurons was 32–37. *p < 0.05 by c2 test.

(D and E) Summary bar graphs showing the mean

amplitudes of AMPAR-mediated SF lemniscal

EPSCs (D) and Max. lemniscal EPSCs (E). Data

represent the means ± SEM of 34–36 neurons. *p <

0.05 by unpaired Student’s t test. n.s., not signifi-

cant.
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potentiation of extrasynaptic GABAAR activation determines

whether the neuron will be remodeled or not. Moreover, pharma-

cological activation of thalamic extrasynaptic GABAARs in

normal mice induced the recruitment of new lemniscal

fibers, resembling IONC-induced remodeling, and conditional

knockout of extrasynaptic GABAARs in the VPM prevented the

remodeling of lemniscal fibers. Interestingly, deletion of extrasy-

naptic GABAARs at a later stage rescued the remodeling (Fig-

ure 6). Taken together, these results indicate that potentiation

of extrasynaptic GABAARs is an indispensable factor in trig-

gering the remodeling and is also crucial for the maintenance

of the remodeled network.

Clarkson et al. (2010) demonstrated that a reduction in GABA

uptake from GABA transporter dysfunction contributes to

enhanced tonic inhibition in the peri-infarct cortex after a stroke.

Although we did not rule out a possible contribution of GABA

transporters to the enhanced GABAAR current in our study, we

did find that the expression of extrasynaptic GABAARs was

markedly increased after IONC (Figure 2) and that the currents

were enhanced by direct activation of extrasynaptic GABAARs

by THIP (Figure 1). Therefore, the potentiation of extrasynaptic

GABAAR currents was likely caused by an increased number

of extrasynaptic GABAARs on VPM neurons, rather than by

changes in the GABA transporter function.

It was reported that GABA can exert an excitatory effect after

peripheral injury in the spinal cord and the cortex because of the

downregulation of K+-Cl� cotransporter 2 (KCC2) (Coull et al.,

2003; Mòdol et al., 2014). However, any such influence on the
activity of VPM neurons appears to be relatively minor in the pre-

sent study because of the burst-firing mode observed in vitro,

which generally occurs in hyperpolarized VPM neurons (Fig-

ure S5) (Cope et al., 2005). Postsynaptic excitability has a critical

role in the development of innervation patterns (Lorenzetto et al.,

2009; Mikuni et al., 2013). For instance, a genetic reduction of

neural activity in postsynaptic cerebellar Purkinje cells impairs

the normal one-to-one connection between presynaptic climb-

ing fibers and Purkinje cells (Lorenzetto et al., 2009; Mikuni

et al., 2013). Thus, we argue that the reduced excitability of

VPMneurons caused by potentiated extrasynaptic GABAAR cur-

rents drives the abnormal remodeling of afferent fibers.

It has been proposed that changes in synaptic and extrasy-

naptic GABAAR subunits can be compensatory (Drexel et al.,

2013; Liang et al., 2004; Zhang et al., 2007). For instance, over-

expression of extrasynaptic GABAARs decreases synaptic

GABAAR transmission in mouse hippocampal neurons (Wu

et al., 2013). This suggests that synaptic and extrasynaptic

GABAARs compete for a limited number of receptor slots on a

neuron. Cortical lesions also induce enhanced extrasynaptic

GABAAR currents but reduce synaptic GABAAR currents (Imbro-

sci et al., 2013). Similar homeostatic mechanisms may occur in

the VPM in the present study after peripheral nerve injury. How-

ever, regarding the remodeling, potentiation of extrasynaptic

GABAAR currents is likely to be the primary process because sol-

itary application of an extrasynaptic GABAAR agonist, THIP,

mimicked IONC-induced remodeling without any effect on syn-

aptic GABAAR currents (Figures 4 and S4).
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Figure 6. Conditional Deletion of Extrasynaptic GABAAR a4 Sub-

units from VPM Neurons after IONC Restores IONC-Induced Re-

modeling of Lemniscal Afferent Fibers

(A) Experimental schedule. IONC was conducted at P21 (POD0) in a4-floxed

mice and lentivirus vector expressing improved Cre (iCre), and GFP was in-

jected into the VPM at P26 (POD5). Lemniscal afferent fiber-EPSCs were re-

corded from a4 KO (GFP-positive) and neighboring control (GFP-negative)

VPM neurons during P33–43 (POD11–22).

(B) Images of a recorded VPM neuron expressing GFP (top, a4 KO, green) and

a recorded neuron that did not express GFP (bottom, control). The neurons

were filled with biocytin (white) and immunostained with an anti-a4 subunit

antibody (red).

(C) Representative traces of AMPAR-mediated lemniscal EPSCs from a con-

trol neuron (top) and an a4 KO neuron (bottom).

(D) Proportions of a4 KO and control VPM neurons with different numbers of

discrete AMPAR-mediated lemniscal EPSC steps. The number of recorded

neurons was 17–30. *p < 0.05 by c2 test.

(E and F) Summary bar graphs showing the mean amplitudes of SF (E) and

Max. (F) AMPAR-mediated EPSCs. Data represent the means ± SEM of 17–30

neurons. *p < 0.05 by unpaired Student’s t test. n.s., not significant.

A

B

C

Figure 7. Conditional Deletion of Extrasynaptic GABAAR a4 Sub-

units Suppresses Ectopic Mechanical Hypersensitivity in the

Mandibular Region of Mice

(A) Experimental schedule for behavioral tests with lentivirus-vector-injected

a4-floxed mice.

(B) Schematic drawing of mechanical stimulation area and surgical operation.

(C) Summary bar graphs showing the changes in the mechanical withdrawal

threshold induced by IONC on the ipsilateral side of the mandibular (left) and

maxillary (right) regions. Data represent themeans ±SEMof 10–12mice. ***p <

0.001, post hoc Bonferroni test after one-way ANOVA.
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Clinical deafferentation of peripheral sensory inputs, such as

limb amputation, frequently leads to neuropathic pain, including

phantom referred pain. Although the pathophysiological mecha-

nisms underpinning these abnormal sensations are not fully un-

derstood, it was proposed that reorganization of neural circuits in

the somatosensory thalamus is the primary cause (Head and

Holmes, 1911; Ray et al., 2009). Several intraoperative studies

revealed that somatotopic rearrangement is well correlated

with phantom pain. We recently reported that IONC leads to

ectopic mechanical hypersensitivity in the mandibular region

(Takeuchi et al., 2017), which is innervated by the third branch

of the trigeminal nerve, consistent with previously reported

pain behavior (Iwata et al., 2001; Nomura et al., 2002; Tal and

Bennett, 1994; Tsuboi et al., 2004). We further reported that

the anatomical and functional remodeling of lemniscal fibers

closely correlates with reorganization of the receptive field and

ectopic mechanical hypersensitivity (Takeuchi et al., 2017). The

origins of these newly recruited fibers after IONC are the unaf-

fected ectopic regions: the mandibular principal trigeminal
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nucleus, the interpolar part of the spinal trigeminal nucleus, and

the dorsal column nuclei (Takeuchi et al., 2017). This somato-

topic reorganization is well matched to the body parts with

ectopic mechanical hypersensitivity. Here, we demonstrated

that extrasynaptic GABAAR currents in the VPM are required

for the abnormal remodeling of lemniscal fibers and regulated

ectopic mechanical hypersensitivity in the mandibular region.

Therefore, the abnormal remodeling of lemniscal fibers induced

by the potentiation of tonic GABAAR inhibition presumably drives

the ectopic mechanical hypersensitivity.

We also observed that VPM neuronal firing shifted to burst

mode in vivo after IONC (Figure S6), which is consistent with

the potentiation of extrasynaptic GABAAR currents. Burst dis-

charges in the somatosensory thalamus are proposed to be

related to neuropathic pain (Hains et al., 2005, 2006; LeBlanc

et al., 2016; Lenz et al., 1989, 1998). For instance, an abnormal

bursting pattern is observed in the thalamic neurons of pa-

tients with neuropathic pain, including phantom pain (Lenz

et al., 1989, 1993, 1998; Radhakrishnan et al., 1999), and in

animals after nerve damage (LeBlanc et al., 2016; Wang and

Thompson, 2008; Weng et al., 2000). In contrast, there have

been conflicting reports that thalamic bursts negatively corre-

late with pain (Huh and Cho, 2013; Radhakrishnan et al.,

1999). Therefore, the role of burst discharges in pain behavior

remains controversial. More research will be required to show

definitely that burst discharges are responsible for ectopic

hypersensitivity.

Multiple lines of evidence demonstrate the alteration of extra-

synaptic GABAAR function under pathological conditions,

including tinnitus (Sametsky et al., 2015), alcoholism (Follesa

et al., 2005), epilepsy (Peng et al., 2004), depression (Holm

et al., 2011), and traumatic brain injury (Kharlamov et al., 2011).

For instance, a peripheral acoustic insult upregulates extrasy-

naptic GABAAR currents in the auditory thalamus (Sametsky

et al., 2015). Clarkson et al. (2010) previously found that geneti-

cally reducing the number of extrasynaptic GABAARs proved

beneficial for functional recovery after a stroke. Together with

our findings, these previous studies suggest that potentiated ex-

trasynaptic GABAAR currents after peripheral nerve injury have a

critical role in the pathological, plastic changes in the CNS.

Importantly, we demonstrate here that blockade of extrasynap-

tic GABAAR currents in the somatosensory thalamus rescues

abnormal remodeling of lemniscal fibers and ectopic mechanical

hypersensitivity after peripheral nerve injury. Therefore, control

of potentiated extrasynaptic GABAARs currents in the somato-

sensory thalamus may be an effective therapeutic strategy for

phantom and/or referred pain.
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Antibodies

Rabbit anti-a4 subunit Phosphosolutions Cat# 844-GA4N; RRID: AB_2492104

Guinea pig anti-a1 subunit Synaptic Systems Cat# 224 205; RRID: AB_2619929

Rat anti-GFP Nacalai Tesque Cat# 04404-84; RRID: AB_10013361

Alexa Fluor-594 anti-rabbit IgG Thermo Fisher Scintific Cat# A21207; RRID: AB_141637

Alexa Fluor-488 anti-guinea pig IgG Jackson ImmunoResearch Cat# 706-545-148; RRID: AB_2340472

Chemicals, Peptides, and Recombinant proteins

THIP Sigma-Aldrich Cat# T101; CAS# 85118-33-8

Strychnine Sigma-Aldrich Cat# 134929; CAS# 57-24-9

D-APV Tocris Cat# 0106; CAS# 79055-68-8

NBQX Tocris Cat# 0373; CAS# 118876-58-7

Bicuculline methochloride Tocris Cat# 0131; CAS# 53552-05-9

CGP55845 Tocris Cat# 1248; CAS# 149184-22-5

GABA Nacalai Tesque Cat# 02006-64; CAS# 56-12-2

Biocytin Sigma-Aldrich Cat# B4261; CAS# 576-19-2

Texas Red-conjugated streptavidin Vector laboratories Cat# SA-5006; RRID: AB_2336754

Alexa Fluor 633-conjugated streptavidin Thermo Fisher Scintific Cat# S21375; RRID: AB_2313500

VECTATAIN Elite ABC Standard Kit Vector laboratories Cat# PK-6100; RRID: AB_2336819

DAB (3,30-diaminobenzidine tetrahydrochloride) Dojindo Cat# D006; CAS# 7411-49-6

Fluoromount-G SouthernBiotech Cat# 0100-01

ProLong Golg antifade reagent with DAPI Thermo Fisher Scintific Cat# P36931

Experimental Models: Organisms/Strains

Mouse: C57BL/6N Sankyo Labo Service Corporation http://www.sankyolabo.co.jp/

Mouse: a4-floxed (B6.129 Gabra4 < tm1.2 Geh > /J) The Jackson Laboratory Stock# 006874; RRID:IMSR_JAX:006874

Mouse: Krox20-Cre (STOCK Egr2 < tm2(cre)Pch > /J) The Jackson Laboratory Stock# 025744; RRID:IMSR_JAX:025744

Mouse: Ai14 (B6.Cg-Gt(ROSA)26Sor < tm14(CAG-

tdTomato)Hze > /J)

The Jackson Laboratory Stock# 007914 RRID:IMSR_JAX:007914

Oligonucleotides

‘‘iCre producting primer, forward:

CCTGCATGCTCCGGCCGGACTCAGATCTC’’

This paper/Custom No account

‘‘iCre producting primer, reverse:

CGGTATCGATTCAGTCCCCATCCTCGAGCA’’

This paper/Custom No account

Recombinant DNA

FUGW plasmid Addgene Cat# 14883 by Dr David Baltimore

psPAX2 Addgene Cat# 15246

pCAG-VSVG – Gift from Dr Arthur Nienhuis

Software and Algorithms

MATLAB MathWorks RRID: SCR_001622

Igor Pro 6 WaveMetrics RRID: SCR_000325

Mini Analysis Program Synaptosoft RRID: SCR_002184

Patch Master HEKA N/A

ImageJ NIH RRID: SCR_003070

StatView 5.0 SAS N/A

GraphPad Prism 6 GraphPad Software RRID: SCR_002798
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Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Prof.

Mariko Miyata (mmiyata@twmu.ac.jp).

Materials availability
This study did not generate any unique reagents.

Data and code availability
This study did not generate any unique detasets or code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
The present study was conducted in accordance with the Guiding Principles for the Care and Use of Laboratory Animals recommen-

ded by TokyoWomen’sMedical University. Every effort wasmade tominimize the number and suffering of animals used in this study.

The following mice were used: both sexes of C57BL/6N mice (P14–33; Sankyo Labo Service Corporation, Tokyo, Japan); B6.129

Gabra4 < tm1.2 Geh > /J mice (P14–43; GABAAR a4 subunit-floxed mice, referred to herein as a4-floxed mice; Jackson Laboratory,

Bar Harbor, ME, USA) (Chandra et al., 2006); and Krox20-Ai14 transgenic mice (P21–31) (Takeuchi et al., 2014). To obtain a4-floxed

homozygotes, male and female a4-floxed heterozygotes were crossed. Krox20-Ai14 transgenic mice, in which the lemniscal fibers

associated with the maxillary principal trigeminal nucleus (PrV2) are labeled with tdTomato, were used to precisely locate recording

sites in the VPM associated with the maxillary trigeminal nerve branch (V2) for in vivo recording (Takeuchi et al., 2014). The animals

were housed in a room maintained at 23 ± 1�C with a 12 h light/dark cycle (lights on, 9:00 A.M.). Food and water were available ad

libitum.

Complete transection of ION
Mice aged P21 were deeply anesthetized by intraperitoneal administration of ketamine (80 mg/kg) and xylazine (10 mg/kg). The ION

on the left side of the face was exposed under a dissecting microscope and completely transected using sterilized fine scissors, and

the cut planes were separated by a distance of at least 1.0 mm to prevent regeneration. In the sham operation, the ION was exposed

without cutting. The skin was then sutured with silk thread. Physiological saline (0.2 mL per animal) was injected subcutaneously to

prevent dehydration after the surgery.

METHOD DETAILS

Slice preparation
The mice were rapidly decapitated under deep isoflurane anesthesia (Abbott Japan, Osaka, Japan), and the brain was cooled in an

ice-cold sucrose solution containing (in mM) 234 sucrose, 2.5 KCl, 10MgCl2, 0.5 CaCl2, 1.25 NaH2PO4, 25 NaHCO3, 10 glucose, and

0.5 myo-inositol. Horizontal or parasagittal slices (300 mm thickness) were cut with a vibratome (VT1200S; Leica, Nussloch, Ger-

many), transferred into a submerging chamber, and incubated for 30 min with artificial cerebrospinal fluid (ACSF) containing (in

mM) 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 1 MgSO4, 2 CaCl2, 26 NaHCO3, and 20 glucose, which was bubbled continuously with a

mixture of 95%O2 and 5%CO2 at 32
�C. Horizontal slices were used for recordings of evoked IPSCs (eIPSCs) in response to minimal

stimulation of the RTN (Cope et al., 2005; Huntsman and Huguenard, 2000). Parasagittal slices were used for recordings of evoked

AMPAR-mediated lemniscal EPSCs (eEPSCs), spontaneous IPSCs (sIPSCs), and extrasynaptic GABAAR currents (Arsenault and

Zhang, 2006; Miyata and Imoto, 2006; Takeuchi et al., 2012).

In vitro whole-cell recordings
Whole-cell voltage-clamp recordings weremade from VPM neurons under an upright microscope (BX50WI; Olympus, Tokyo, Japan)

with an infrared differential interference contrast video system (C2400-79H; Hamamatsu Photonics, Hamamatsu, Japan). For
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recordings of eEPSCs, sEPSCs, and sIPSCs, glass patch pipettes were filled with an internal solution composed of (in mM): 135 Cs

methanesulfonate, 10 HEPES, 1 EGTA, 2 MgCl2, 0.1 CaCl2, 1 NaCl, 5 QX-314 chloride, 2 ATP-Na2, 0.5 GTP-Na, and 0.5% biocytin,

adjusted to pH 7.3 with CsOH. The osmolality was 290–300 mOsm, the liquid junction potential was +14.7 mV, and the resistance of

the patch pipette was 2.5–3.5 MU. For recordings of membrane potential (current-clamp), glass patch pipettes were filled with an

internal solution composed of (in mM): 150 K-gluconate, 0.5 EGTA, 10 HEPES, 4 MgCl2, 0.1 CaCl2, 4 ATP-Na, 0.4 GTP-Na, and

0.5% biocytin, adjusted to pH 7.3 with KOH. The osmolality was 300–305 mOsm, the liquid junction potential was uncompensated.

For recordings of eIPSCs, an external solution (in mM: 126 NaCl, 2.95 KCl, 1.25 NaH2PO4, 2 MgCl2, 2 CaCl2, 26 NaHCO3, and 10

glucose) containing NBQX (20 mM), D-APV (50 mM), and strychnine (1 mM) (Peden et al., 2008), and an internal solution (in mM:

140 CsCl, 1 CaCl2, 5 QX-314 chloride, 10 HEPES, 10 EGTA, 2 ATP-Mg, and 0.5% biocytin, adjusted to pH 7.3 with CsOH;

300–305 mOsm; liquid junction potential, +13.0 mV) (Peden et al., 2008) were used. For recordings of evoked miniature IPSCs

(mIPSCs), after recording a unitary eIPSC, Ca2+ in the external solution was replaced with Sr2+ (SrCl2, 4 mM) (Takeuchi et al.,

2012). All experiments were performed at 30–32�C. The liquid junction potential was compensated. Series resistances (typically

less than 20 MU) were monitored online and compensated 70%. Recorded signals were amplified by an EPC10 patch-clamp ampli-

fier (HEKA, Lambrecht, Germany), filtered at 2.9 kHz, and digitized at 20 kHz.

Both the unitary eIPSCs and evoked mIPSCs were elicited at a holding potential of �60 mV with the same stimulus delivered by a

concentric electrode (tip diameter, 25 mm; Inter Medical, Nagoya, Japan) placed in the reticular thalamic nucleus (Huntsman and Hu-

guenard, 2000). The stimulus consisted of a 200 ms pulse generated by an isolator (BAK Electronics, Oxford, UK) andwas delivered at

0.1 Hz. For recording endogenous or agonist-induced extrasynaptic GABAAR currents, bicuculline methochloride (100 mM) or THIP

(10 mM) was bath-applied for 5 min or 30 s, respectively, at a holding potential of 0 mV. eEPSCs were elicited by a concentric elec-

trode placed onto the fiber bundle of the medial lemniscus, as reported previously (Arsenault and Zhang, 2006; Miyata and Imoto,

2006; Takeuchi et al., 2012), at a holding potential of �60 or �70 mV. We investigated lemniscal EPSC steps using increments of

stimulus intensity to evaluate the lemniscal fiber innervation pattern. Because lemniscal fiber remodeling starts from POD5 (Takeuchi

et al., 2012), we recorded neurons on POD6�9, first recording eEPSCs at a holding potential of �60 mV and then recording extra-

synaptic GABAAR currents at a holding potential of 0 mV in the same neuron.

To record spontaneous synaptic events, neurons were held at �60 mV (i.e., the reversal potential of IPSCs) for sEPSCs or at 0 mV

(i.e., the reversal potential for EPSCs) for sIPSCs. To estimate the balance of excitatory and inhibitory synaptic inputs, we first re-

corded sEPSCs and sIPSCs, and then recorded extrasynaptic GABAAR currents from the same VPM neurons. We then calculated

the excitatory and phasic/tonic inhibitory charges from the recorded synaptic currents. The total number of events in sham neurons,

IONC-multiple neurons, and IONC-single neurons was 12168 events (from seven neurons), 12504 events (from eight neurons), and

12936 events (eight neurons), respectively.

The eIPSCs and eEPSCs were acquired and analyzed using a custom-built Igor Pro procedure (tUtility: https://github.com/

yuichi-takeuchi/tUtility). The mIPSCs, sIPSCs, and sEPSCs were analyzed using the Mini Analysis Program (Synaptosoft Inc., Dec-

atur, GA, USA) or a custom-built Igor Pro procedure (miniAna: https://github.com/yuichi-takeuchi/miniAna). The analysis window

was 100–500 ms after each stimulus.

Immunohistochemical staining of a subunits of the GABAAR
C57BL/6N mice aged P24 (POD3 after IONC or age-matched normal C57BL/6Nmice) were deeply anesthetized with sodium pento-

barbital (60–100mg/kg, intraperitoneally) and perfused transcardially with phosphate-buffered saline (PBS) followed by a fixative (4%

paraformaldehyde and 0.2% picric acid in 0.1 M PBS), and postfixed for less than 30 min. The brains were coronally cut into 30 mm

sections using a vibratome. Sections were incubated for 24–48 h at 4�C with a rabbit polyclonal antibody against the a4 subunit

(844-GA4N; Phosphosolutions, Aurora, CO, USA; 1:300) and a guinea pig polyclonal antibody against the a1 subunit (224 205; Syn-

aptic Systems, Göttingen, Germany; 1:500) in 0.05M PBS containing 10% normal donkey serumwithout Triton X-100. After washing

in PBS, the sections were reacted with secondary antibodies conjugated to Alexa Fluor 594 (for a4; Thermo Fisher Scientific,

Waltham, MA, USA; 1:500) and Alexa Fluor 488 (for a1; Jackson ImmunoResearch, West Grove, PA, USA; 1:500) for 2–3 h at

room temperature. The sections were mounted on glass slides and coverslipped with Prolong Gold antifade reagent with DAPI

(Thermo Fisher Scientific). Images were acquired using an oil-immersion objective (63 3 ) with a resolution of 2048 3 2048 pixels

(134.95 3 134.95 mm, z step = 0.5 mm, from the surface to a depth of 3–5 mm) with an LSM 710 confocal laser scanning microscope

(Carl Zeiss, Oberkochen, Germany). Two regions of interest were placed in the dorsal part of the VPM in each hemisphere of one

section (three sections per animal). Binary masks of clustered staining of a subunits (Lorenzo et al., 2014) were extracted from Zeiss

LSM image files using a custom-built software written with MATLAB (MathWorks Inc., Natick, MA, USA).

After the electrophysiological recordings, to confirm lentivirally expressed iCre-GFP, biocytin-filled VPM neurons were fixed with

the fixative solution overnight at 4�C and visualized using a Texas Red-conjugated streptavidin (SA-5006; Vector Laboratories, Bur-

lingame, CA, USA) or standard ABC-DAB reaction protocol with cytochrome oxidase counterstain (Takeuchi et al., 2012). To examine

a4 subunit expression in recorded neurons, 300 mm-thick sections were re-sectioned at 50 mm. Sections were incubated overnight at

4�Cwith a rat monoclonal antibody against GFP (04404-84; Nacalai Tesque, Kyoto, Japan; 1:3,000) and a rabbit polyclonal antibody

against the a4 subunit in 0.05 M PBS containing 10% normal donkey serum with 0.3% Triton X-100. The sections were further re-

acted with Alexa Fluor 633-conjugated streptavidin (S21375; Thermo Fisher Scientific; 1:500), and secondary antibodies conjugated

to Alexa Fluor 594 (for a4; Thermo Fisher Scientific; 1:500) and Alexa Fluor 488 (for iCre-GFP; Thermo Fisher Scientific; 1:500).
e3 Cell Reports 31, 107797, June 23, 2020
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Chronic administration of an extrasynaptic GABAAR agonist through an osmotic mini-pump
An extrasynaptic GABAAR agonist, THIP, was chronically applied to the VPM through a slow-release Alzet osmotic mini-pump

(1.0 mL/h for 1 week: Alzet model 1700D; Durect Corporation, Cupertino, CA, USA). C57BL/6N mice aged P21 were deeply anesthe-

tized with ketamine (80 mg/kg) and xylazine (10 mg/kg), and placed in a stereotaxic apparatus. The skull was exposed, and a small

hole was made using a dental drill. A guide cannula (Alzet Brain Infusion Kit 2; Durect Corporation) was implanted into the right VPM

(coordinates in mm: 1.6 posterior and 1.4 lateral to bregma, 3.2 below the dura), according to the mouse brain atlas (Franklin and

Paxinos, 2007). The guide cannula was fixed to the skull with cranioplastic cement. A guide cannula was attached to extension tubes

and linked to the osmotic mini-pump, which was installed in a subcutaneous pocket on the lateral back of themouse. After the instal-

lation of the osmotic mini-pump, back wounds from the operation were closed with sutures, and the mice were intraperitoneally in-

jectedwith a solution of 5%glucose (0.3mL permouse) to prevent dehydration and supply energy. The osmoticmini-pumpwas used

to directly inject THIP (100 mM) with 0.1% Fast Green into the VPM through a guide cannula chronically for 6–12 days.

Virus preparation and infection
The VSV-G pseudotyped lentiviral vectors were provided by Dr. David Baltimore (through Addgene, FUGW plasmid #14883)

(Lois et al., 2002). The vectors were designed to express either GFP or GFP and iCre under the control of the human polyubiqui-

tin-C promoter. Full-length cDNA of iCre was produced by PCR with primers (50-CCTGCATGCTCCGGCCGGACTCAGATCTC-30

and 50-CGGTATCGATTCAGTCCCCATCCTCGAGCA-30), linked in-frame, interposed with GFP by a picornavirus ‘‘self-cleaving’’

P2A peptide sequence to enable efficient bicistronic expression, and then subcloned into the BamH1 and EcoR1 sites of the

FUGWvector. The viral vector was produced by cotransfection of human embryonic kidney 293T cells (2–63 106/dish) with amixture

of two packaging plasmids (7 mg psPAX2, Addgene, plasmid 15246; 3 mg pCAG-VSVG, gift from Dr. Arthur Nienhuis) (Niwa et al.,

1991), and 10 mg FUGW vector plasmid using a calcium phosphate precipitation method as reported previously (Uesaka et al., 2014).

The GABAAR a4 subunit-floxed mice (referred to hereafter as a4-floxed mice) were anesthetized on P14 or P26 using 3.0%–3.5%

isoflurane and placed in a stereotaxic frame. A small volume (400 nL) of lentivirus vector solution was injected into the right VPM (co-

ordinates in mm: 1.35–1.40 posterior and 1.40–1.45 lateral to bregma, 3.20–3.30 below the dura, depending on the weight of the

mouse) through amicroneedle syringe (NF35BV and NANOFIL; World Precision Instruments, Sarasota, FL, USA) by continuous pres-

sure from a microsyringe pump (Quintessential Stereotaxic Injector 53311; Stoelting Co., Wood Dale, IL, USA). The skin was sutured

with silk thread after the infusion of the lentivirus vector and then mice were subcutaneously injected with physiological saline

(0.2–0.3 mL per mouse) to prevent dehydration. After 1 week of survival, mice received IONC under deep anesthesia induced

with ketamine and xylazine.

In vivo extracellular recording of thalamic neuronal firing in unanesthetized mice
Krox20-Ai14 transgenic mice, in which the lemniscal fibers associated with the maxillary nerve are labeled with tdTomato, were used

to locate the exact recording sites (Takeuchi et al., 2014). A custom-made head holder was mounted on the skull, as previously

described (Chiken et al., 2008; Sano et al., 2013). Briefly, each mouse was anesthetized with ketamine/xylazine and mounted on

a stereotaxic apparatus. The skull was exposed, and the head holder was mounted and fixed with bone-adhesive resin and acrylic

resin. Electrodes for recording the electromyogram (EMG) (Chiken et al., 2008) and electrocorticogram (ECoG) were implanted in the

triceps brachii muscles and in the parietal cortex to monitor muscle activity and brain electrical activity, respectively. Finally, a crani-

otomy was performed above the VPM. After surgery, mice were exposed to the recording environment daily for acclimation.

On POD9–10, a mouse was mounted in the stereotaxic apparatus with head fixation without anesthesia. Multi-unit activity in the

VPMwas recorded via amicroelectrode (9–12MU at 1 kHz; FHC, Inc., Bowdoin, ME, USA). The target area was 1.5–1.7mmposterior

and 1.8–1.9 mm lateral from bregma, and 3.0–3.4 mm below the pia. Signals in the VPM were processed with an extracellular ampli-

fier (2400A; Dagan, Minneapolis, MN, USA) and filtered at 250–3000 Hz. The EMG and ECoG signals were filtered at 15–3000 Hz and

0.08–3000 Hz, respectively. Signals were recorded using a 1401 plus interface (Cambridge Electronic Design, Cambridge, UK) with a

sampling rate of 50 kHz for multi-unit activity and 6250 Hz for EMG and ECoG signals. After the recordings, several recording sites

were electrolytically lesioned (anodal currents; typically 5 mA, 10 s). Themice were then deeply anesthetized, transcardially perfused,

and fixed. After removal, the brains were coronally sectioned (50 mm thickness), counterstained with fluoro-Nissl staining, and cover-

slipped. Images were acquired using a confocal laser-scanning microscope (Carl Zeiss).

Only VPM recordings associated with themaxillary nerve were analyzed. Data collected during bodymovements with intense EMG

signals were discarded. We analyzed the data with a custom-built Igor Pro procedure (tSort: https://github.com/yuichi-takeuchi/

tSort). Spikes were sorted by a semi-automated procedure using principal component analysis and clustering followed by manual

correction using window discrimination (Figure S6). Each spike was automatically identified as a burst or tonic (non-burst) event (Fig-

ure S6). Burst spikes were defined as spikes within a burst episode. A burst episode was initiated by an inter-spike interval (ISI) %

6 ms and ended with a spike preceding an ISI > 10 ms. A burst episode must also have been preceded by an ISI > 20 ms (Lenz et al.,

1998).

Tactile sensory test
The VPM of P14 a4-floxed mice was infused with lentivirus vector under deep isoflurane anesthesia, and mice were then randomly

divided into sham and IONC groups. For the control, we injected a lentivirus vector expressing only GFP into the VPM of a4-floxed
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(control) mice. After recovering from the lentivirus injection, themicewere habituated to being held in the experimenter’s hands and to

von Frey filament application to their maxillary (innervated by the V2 nerve branch) and mandibular (innervated by the V3 nerve

branch) regions for 5 days prior to IONC or sham surgery (Seino et al., 2009). On P21, mice received IONC or a sham operation

as described above. To evaluate themechanical withdrawal threshold, von Frey filaments with bending forces of approximately equal

logarithmic steps (0.02, 0.03, 0.07, 0.16, 0.4, 0.6, 1.0, and 1.4 g force) were applied to the mandibular and maxillary regions in

ascending order of force. Each von Frey filament was applied five times. Whenmice showed awithdrawal response (e.g., scratching,

face moving, or vocalization) to a filament more than three times, the bending force of that filament was defined as the withdrawal

threshold. If mice did not show any responses to the 1.4 g force filament, the withdrawal threshold was set at 1.5 g (Dixon, 1980).

This series of assessments was repeated two or three times, and the average of these assessments was considered the withdrawal

threshold for that mouse on that day. The assessments were performed before IONC and during POD4–5. Ectopic mechanical hy-

persensitivity was assessed by using von Frey filaments to measure the mechanical withdrawal threshold in the mandibular region.

After IONC, the mechanical withdrawal threshold in the mandibular region decreases significantly compared with the pre-IONC

threshold, and this change is temporally consistent with lemniscal fiber remodeling (Takeuchi et al., 2017). By contrast, mechanical

withdrawal thresholds in the maxillary region after IONC reached the force of the cut-off filament because these mice had no sensa-

tion in the maxillary region following IONC.

To evaluate the withdrawal thresholds in the maxillary and mandibular regions in mice treated chronically with THIP, normal mice

aged P49–51 had a guide cannula (Alzet Brain Infusion Kit 2) implanted into the right VPM (coordinates in mm: 1.6 posterior and 1.4

lateral to bregma, 3.2 below the dura) according to themouse brain atlas (Franklin and Paxinos, 2007) under deep anesthesia. Normal

mice aged P49–51 were used to reduce surgical invasion by an osmotic mini-pump implantation for analyzing behavioral response.

The guide cannula was attached to extension tubes and linked to the osmotic mini-pump filled with 100 mM THIP and 0.1% Fast

Green, which was installed in a subcutaneous pocket on the lateral back of the mouse. Withdrawal threshold assessments were per-

formed before the implantation of the osmotic mini-pump and at POD7.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data for whole-cell recordings fromVPMneuronswere acquired using PatchMaster software (version v2x53; HEKA Instruments Inc.,

Holliston, MA, USA) and analyzed in Igor Pro software (version 6.3; WaveMetrics, Inc., Portland, OR, USA) or Mini Analysis Program

(version 6.0.7; Synaptosoft Inc.). Statistical significance was determined by unpaired Student’s t test, paired t test, one-way ANOVA

followed by Bonferroni test, Kolmogorov–Smirnov test, X2 test, or Mann–Whitney U-test in GraphPad Prism software (version 6.05;

GraphPad Software Inc., La Jolla, CA, USA) or StatView software (version 5.0; SAS Institute Inc., Cary, NC, USA). For MATLAB k-

means clustering of sham and IONC VPM neurons on the basis of endogenous and antagonist-induced extrasynaptic GABAAR cur-

rents, the optimal number of clusters tested ranged from one to three clusters. All data are presented as the mean ± SEM.
e5 Cell Reports 31, 107797, June 23, 2020



Cell Reports, Volume 31
Supplemental Information
Tonic GABAergic Inhibition Is Essential for Nerve

Injury-Induced Afferent Remodeling in the

Somatosensory Thalamus and Ectopic Sensations

Yasuyuki Nagumo, Yoshifumi Ueta, Hisako Nakayama, Hironobu Osaki, Yuichi
Takeuchi, Naofumi Uesaka, Masanobu Kano, and Mariko Miyata



1 

 

Supplemental Information 

 

Tonic GABAergic inhibition is essential for nerve injury-induced afferent 

remodeling in the somatosensory thalamus and associated ectopic sensations 

 

Yasuyuki Nagumo, Yoshifumi Ueta, Hisako Nakayama, Hironobu Osaki, Yuichi 

Takeuchi, Naofumi Uesaka, Masanobu Kano, and Mariko Miyata 

 

Contents: 

Supplemental Figures 

 Figure S1: Infraorbital nerve cut (IONC) induces abnormal remodeling of 

afferent lemniscal fibers in the somatosensory thalamus (related to Figure 1 of 

the main text). 

 Figure S2: Two clusters of VPM neurons can be identified on the basis of the 

amplitude of extrasynaptic GABAAR currents during the early stages of 

remodeling (related to Figure 1 of the main text). 

 Figure S3: IONC rapidly reduces synaptic GABAAR currents in VPM neurons 

(related to Figure 1 of the main text). 

 Figure S4: THIP affects extrasynaptic, but not synaptic, GABAAR currents in 4 

deleted VPM neurons (related to Figure 5 of the main text). 

 Figure S5: Application of THIP in vitro facilitates burst firing of VPM neurons 

(related to Figure 1-6 of the main text). 

 Figure S6: IONC increases burst mode in vivo (related to Figure 1-6 of the main 

text). 

 Figure S7: Effect of conditional deletion or pharmacological enhancement of 

extrasynaptic GABAAR currents on mechanical withdrawal thresholds in the 

mandibular and maxillary regions (related to Figure 7 of the main text). 



2 

 

Supplemental Tables 

 Table S1: Agonist-induced and endogenous extrasynaptic GABAAR currents in 

VPM neurons (related to Figure 1 of the main text). 

 Table S2: IONC-induced changes in immunoreactivity of GABAAR 4 and 1 

subunits in the VPM (related to Figure 2 of the main text). 

 Table S3: Inhibitory and excitatory input intensities on VPM neurons (related to 

Figure 3 of the main text). 

 Table S4: Single fiber and the maximum EPSC amplitudes in VPM neurons 

(related to Figures 4–6 of the main text). 

 Table S5: Withdrawal thresholds for mechanical stimulation to the mandibular 

or maxillary region using von Frey filaments in IONC-operated mice (related to 

Figure 7 of the main text). 

 

  



3 

 

Figure S1 

 

 

Figure S1: Infraorbital nerve cut (IONC) induces abnormal remodeling of afferent 

lemniscal fibers in the somatosensory thalamus (related to Figure 1 of the main text). 

Schema showing lemniscal fiber remodeling after IONC. TN, trigeminal nuclei; VPM, 

thalamic ventral posterior medial nucleus; V1, ophthalmic trigeminal nerve branch; V2, 

maxillary trigeminal nerve branch; V3, mandibular trigeminal nerve branch; AMPAR, 

AMPA receptor; POD, postoperative day. 
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Figure S2 

 

 

Figure S2: Two clusters of VPM neurons can be identified on the basis of the 

amplitude of extrasynaptic GABAAR currents during the early stages of remodeling 

(related to Figure 1 of the main text). 

The cross marks indicate the centroids of each cluster. VPM neurons were obtained from 

sham and IONC mice during POD1−5. The first cluster (magenta) includes 16 neurons 

from sham animals (filled circles) and seven neurons from IONC animals (open circles). 

The second cluster (blue) includes one neuron from a sham animal and 14 neurons from 

IONC animals. 

  



5 

 

Figure S3 

 

Figure S3: IONC rapidly reduces synaptic GABAAR currents in VPM neurons 

(related to Figure 1 of the main text). 

(A) Representative traces of evoked IPSCs (eIPSCs) induced in VPM neurons at POD1 

and POD7 by minimal stimulation of the reticular thalamic nucleus. Holding potential 

was −60 mV. 

(B) Summary graphs showing the mean eIPSC amplitudes grouped by the number of days 

after IONC. POD1–3: 1033 ± 193.1 pA for IONC (n = 26 neurons) and 1697 ± 264.8 pA 

for sham (n = 18); POD4–5: 993.1 ± 161.1 pA for IONC (n = 14) and 1801 ± 311.0 pA 

for sham (n = 14); POD6–9: 1032 ± 124.3 pA for IONC (n = 26) and 1636 ± 169.0 pA 

for sham (n = 23). Data represent the mean ± SEM. *p < 0.05; **p < 0.01; unpaired 
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Student’s t-test. 

(C) Summary bar graph showing the mean amplitudes of spontaneous IPSCs (sIPSCs) 

recorded during POD1–3 and POD6–9. POD1–3: 31.3 ± 3.4 pA for IONC (n = 10 

neurons) and 41.6 ± 2.9 pA for sham (n = 8); POD6–9: 26.4 ± 2.6 pA for IONC-multiple 

(n = 8), 46.2 ± 4.8 pA for sham (n = 7), and 40.1 ± 4.8 pA for IONC-single (n = 7). Data 

represent the mean ± SEM. *p < 0.05; **p < 0.01; unpaired Student’s t-test or one-way 

ANOVA followed by post hoc Bonferroni test. n.s., not significant. 

(D) Summary bar graph showing the mean frequencies of sIPSCs recorded during POD1–

3 and POD6–9. POD1–3: 20.1 ± 1.0 Hz for IONC (n = 10 neurons) and 30.3 ± 2.0 Hz for 

sham (n = 8); POD6–9: 21.8 ± 2.6 Hz for IONC-multiple (n = 8), 30.3 ± 3.1 Hz for sham 

(n = 7), and 29.2 ± 3.9 Hz for IONC-single (n = 7). Data represent the mean ± SEM. ***p 

< 0.001; unpaired Student’s t-test. n.s., not significant. 

(E) Representative traces of miniature IPSCs (mIPSCs) in a VPM cell, evoked from a 

reticular thalamic fiber. Ca2+ (2 mM) in normal ACSF was replaced with Sr2+ (4 mM) to 

record the mIPSCs. Overlay traces were average traces of mIPSCs in sham neurons and 

IONC neurons. 

(F) Cumulative curves showing the amplitudes of mIPSCs during POD1–3. Data were 

obtained from 812 events (n = 8 neurons) for IONC (43.2 ± 0.9 pA) or 783 events (n = 8) 

for sham (55.2 ± 0.9 pA). ***p < 0.001; Kolmogorov–Smirnov test. n.s., not significant. 

(G) Cumulative curves showing the inter-event intervals of mIPSCs during POD1–3. 

IONC: 43.7 ± 1.6 ms; and sham: 40.8 ± 1.5 ms. n.s., not significant. 
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Figure S4 

 

Figure S4: THIP affects extrasynaptic, but not synaptic, GABAAR currents in α4-

deleted VPM neurons (related to Figure 5 of the main text). 

(A) Representative sIPSC traces from VPM neurons lacking α4 subunits before (upper) 

and during (lower) application of THIP (10 μM). 

(B) Summary plots and bar graphs showing the mean sIPSC amplitude in α4-deleted 

VPM neurons before (21.9 pA, n = 10 neurons) and during THIP treatment (21.8 pA, n = 

10 neurons). n.s., not significant, paired Student’s t-test. 
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Figure S5 

 

 

Figure S5: Application of THIP in vitro facilitates burst firing of VPM neurons 

(related to Figures 1–6 of the main text). 

(A) Upper: Representative trace of the membrane potential during bath application of 10 

M THIP and subsequent application of 10 M bicuculline methochloride (BMC). 

Lower: Plots showing the shift in membrane potential for each VPM neuron before (–

63.4 ± 5.85 mV, n = 21 neurons) and after THIP application (–69.3 ± 4.40 mV, n = 21 

neurons). ***p < 0.001, paired Student’s t-test. 

(B) Specimen traces of the voltage responses to depolarizing and hyperpolarizing current 

injections of ± 150 pA recorded in a VPM neuron without THIP (control). Depolarizing 

currents were applied from −55 mV. Inset trace is an enlargement of the initial part of the 

voltage response. 

(C) Voltage responses of the same VPM neuron as shown in (B) during THIP application 

in response to current injections of −150, +150, and +250 pA. The membrane potential 

was hyperpolarized to −65 mV. 

  



9 

 

Figure S6 

 

Figure S6: IONC increases burst spike ratio in vivo (related to Figures 1–6 of the 

main text). 

(A) Spikes were only recorded in the VPM associated with V2 innervation of the 

lemniscus. Dense tdTomato-labeled lemniscal fiber terminals clearly indicate the V2-

associated region of the VPM in Krox20-Ai14 mice (magenta-outlined region). Scale bars, 

1 mm. 

(B) Representative unit spike waveforms from two distinct neurons in the VPM 

associated with the whiskers. Spike amplitudes were smaller in neuron 1. 

(C) The first three principal components of the spike waveform can successfully extract 

two single units. Arrows, contribution vectors. Principal component analysis was 

conducted on the spike waveforms. 

(D) Auto-correlograms of the units revealed in (B) and (C). 

(E) Left: Representative traces of tonic and burst spikes in the VPM. Right: Time-

magnified views of the tonic and burst spikes shown in the left trace. Each event is 

identified by the number above. Burst episodes were defined as starting with an inter-

spike interval (ISI) ≤6 ms and ending with a spike preceding an ISI >10 ms. 
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(F) Representative traces of VPM neuronal firing in magenta-outlined region. Recording 

sites marked by electrolytic lesions were reconstructed using the brain atlas. Spikes were 

classified as tonic or burst on the basis of the inter-spike intervals. 

(G) Summary graph showing the spike frequencies in sham and IONC neurons. Total 

spikes: 5.1 ± 0.8 Hz for IONC (n = 41 neurons) and 9.1 ± 1.5 Hz for sham (n = 30). Tonic 

spikes: 3.8 ± 0.7 Hz for IONC (n = 41) and 6.5 ± 1.1 Hz for sham (n = 30). Burst spikes: 

1.3 ± 0.2 Hz for IONC (n = 41) and 2.6 ± 0.7 Hz for sham (n = 30). Data represent the 

mean ± SEM. *p < 0.05; Mann–Whitney U-test. n.s., not significant. 

(H) The proportion of burst spikes to total (tonic and burst) spikes in sham and IONC 

neurons. Burst ratio: 0.31 ± 0.03 for IONC (n = 41) and 0.22 ± 0.03 for sham (n = 30). 

Data represent the mean ± SEM. **p < 0.01; Mann–Whitney U-test. 
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Figure S7 

 

Figure S7: Effect of conditional deletion or pharmacological enhancement of 

extrasynaptic GABAAR currents on mechanical withdrawal thresholds in the 

mandibular and maxillary regions (related to Figure 7 of the main text). 

(A) Experimental schedule for behavioral tests with lentivirus vector-injected α4-floxed 

mice. 

(B) Schematic drawing of mechanical stimulation areas in sham-operated mice. OP., 

operation. 

(C) Summary bar graphs showing the changes in mechanical withdrawal thresholds in the 

mandibular (left) and maxillary (right) regions ipsilateral to the sham operation. 

Withdrawal thresholds of the test performed before sham operation were normalized as 1 

in each animal. At POD4–5, withdrawal thresholds for both mandibular stimulation (0.97 

± 0.03, 6 mice for control; 1.00 ± 0.0, 3 mice for α4 KO) and maxillary stimulation (1.38 

± 0.16 for control; 1.39 ± 0.09 for α4 KO) were similar to the baseline level. Data 

represent the mean ± SEM. n.s., not significant by post hoc Bonferroni test following one-

way ANOVA. 

(D) Experimental schedule for behavioral tests with chronic THIP infusion into the 

somatosensory thalamus of normal mice aged P49–51. 
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(E) Schematic drawing of mechanical stimulation areas in THIP-treated mice. 

(F) Summary bar graphs showing the changes in mechanical withdrawal thresholds in the 

mandibular (left) and maxillary (right) regions of THIP-treated mice. Withdrawal 

thresholds of the test performed before THIP treatment were normalized as 1 in each 

animal. At POD7, THIP treatment tended to lower withdrawal thresholds for both 

mandibular stimulation (0.93 ± 0.07, 11 mice for saline-treated; 0.61 ± 0.10, 12 mice for 

THIP-treated) and maxillary stimulation (0.98 ± 0.16 for saline-treated and 0.67 ± 0.11 

for THIP-treated). Data represent the mean ± SEM. **p < 0.01; ***p < 0.001; one-way 

ANOVA followed by post hoc Bonferroni test. n.s., not significant. 
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Table S1: Agonist-induced and endogenous extrasynaptic GABAAR currents in 

VPM neurons (related to Figure 1 of the main text). 

 

Agonist-induced (pA) Sham IONC  Statistics 

POD1–3 543.1 ± 73.6 (12) 930.1 ± 99.8 (12)  Sham < IONC2 

POD4–5 666.6 ± 30.0 (12) 854.0 ± 63.8 (16)  Sham < IONC1 

 Sham IONC-single IONC-multiple Statistics 

POD6–9 572.7 ± 42.6 (14) 554.0 ± 87.4 (10) 922.6 ± 84.5 (15) Sham3 or IONC-single3 < IONC-multiple 

     

Endogenous (pA) Sham IONC  Statistics 

POD1–3 72.3 ± 3.6 (12) 123.2 ± 21.9 (12)  Sham < IONC1 

POD4–5 61.2 ± 7.5 (13) 106.0 ± 13.6 (16)  Sham < IONC1 

 Sham IONC-single IONC-multiple Statistics 

POD6–9 90.3 ± 11.1 (14) 73.8 ± 11.3 (11) 176.9 ± 17.2 (15) Sham4 or IONC-single4 < IONC-multiple 

 

(n), number of recorded neurons. 
1p < 0.05, 2p < 0.01; unpaired Student’s t-test. 
3p < 0.01, 4p < 0.001; one-way ANOVA followed by post hoc Bonferroni test. 
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Table S2: IONC-induced changes in immunoreactivity of GABAAR 4 and 1 

subunits in the VPM (related to Figure 2 of the main text). 

 

IONC/normal ratio 4 subunit 1 subunit Statistics 

Cluster density 5.50 ± 0.18 (3) 1.09 ± 0.18 (3) 4 > 11 

Cluster area 5.99 ± 0.20 (3) 1.08 ± 0.22 (3) 4 > 11 

 

(n), number of used animals. 
1p < 0.001; unpaired Student’s t-test. 
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Table S3: Inhibitory and excitatory input intensities on VPM neurons (related to 

Figure 3 of the main text). 

 

Charges at POD6–9 (pC) Sham IONC-single IONC-multiple Statistics 

Inhibitory phasic 7.0 ± 0.7 (7) 4.2 ± 0.5 (8) 6.8 ± 0.7 (7) Sham > IONC-single1 

Inhibitory tonic 62.4 ± 9.1 (7) 95.1 ± 14.3 (7) 208.7 ± 21.6 (8) Sham2 or IONC-single2 > IONC-multiple 

Inhibitory total 70.4 ± 9.3 (7) 101.8 ± 12.8 (7) 212.3 ± 20.6 (8) Sham2 or IONC-single2 > IONC-multiple 

Excitatory 1.2 ± 0.1 (7) 1.2 ± 0.1 (7) 1.0 ± 0.1 (8) n.s. 

 

(n), number of recorded neurons. 
1p < 0.05, 2p < 0.001; one-way ANOVA followed by post hoc Bonferroni test. 

n.s., not significant. 
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Table S4: Single fiber and the maximum EPSC amplitudes in VPM neurons (related 

to Figures 4–6 of the main text). 

 

(related to Fig. 4) Saline-treated THIP-treated Statistics 

Single fiber amplitude (nA) 1.98 ± 0.36 (25) 1.23 ± 0.42 (20) Control > 4 KO1 

Maximum amplitude (nA) 2.12 ± 0.35 (25) 1.81 ± 0.46 (20) n.s. 

    

(related to Fig. 5) Control 4 KO (from P14) Statistics 

Single fiber amplitude (nA) 1.15 ± 0.31 (21) 1.89 ± 0.36 (26) Control < 4 KO1 

Maximum amplitude (nA) 2.36 ± 0.41 (21) 2.24 ± 0.31 (26) n.s. 

    

(related to Fig. 6) Control 4 KO (from P26) Statistics 

Single fiber amplitude (nA) 1.42 ± 0.25 (28) 1.22 ± 0.23 (17) n.s. 

Maximum amplitude (nA) 2.09 ± 0.23 (28) 1.34 ± 0.21 (17) Control > 4 KO1 

 

(n), number of recorded neurons. 
1p < 0.05; unpaired Student’s t-test. 

n.s., not significant. 
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Table S5: Withdrawal thresholds for mechanical stimulation to the mandibular or 

maxillary region using von Frey filaments in IONC-operated mice (related to Figure 

7 of the main text). 

 

Mandibular stimulation 

(related to Figure 7) 
IONC (control) IONC (4 KO) Statistics 

Before IONC 1.00 ± 0.0 (12) 1.00 ± 0.0 (10) 
Control: before > POD4–51 

4 KO: before > POD4–51 

POD4–5 0.49 ± 0.04 (12) 0.72 ± 0.06 (10) POD4–5: control < 4 KO1 

    

Maxillary stimulation 

(related to Figure 7) 
IONC (control) IONC (4 KO) Statistics 

Before IONC 1.00 ± 0.0 (12) 1.00 ± 0.0 (10) 
Control: before > POD4–51 

4 KO: before > POD4–51 

POD4–5 45.2 ± 2.7 (12) 45.2 ± 2.7 (10) POD4–5: n.s. 

 

Withdrawal thresholds of the test performed before IONC operation were normalized as 

1 in each animal. 

(n), number of used animals. 
1p < 0.001; one-way ANOVA followed by post hoc Bonferroni test. 

n.s., not significant. 
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